
Week 2 - Wednesday



 What did we talk about last time?
 Finished system architectures
 State models
 Implementing state models in C
 Sequence models











 A program is an implementation of an algorithm in a 
programming language
 A list of instructions for the computer

 A process is program being executed
 Usually, processes are different programs
 But it's not unusual to have several processes running at the same 

time that are the same program
 Running a program creates a new process



 Every process has its own virtual memory
 Addresses from 0 up to 232 or 264 bytes

 Each instance of virtual memory is organized into segments
 Code
 Data
 Heap
 Stack
 Kernel

 Each segment has certain kinds of operations allowed on it
 Do illegal operations, and you get a segmentation fault
 As functions get called, the stack grows downward
 Call too many functions, and you'll get a stack overflow when it 

gets too big
 Depending on the system, the heap can grow too
 malloc() returns NULL when you run out of heap space

High Memory

Kernel OS memory

Stack
Local variables, 
return addresses

Heap
Dynamically 
allocated data

Low Memory

Data Global variables

Code
Program 
instructions



 Different operating systems have different layouts, but the fundamental 
ideas are the same

 The Linux machines in this lab use 64-bit processors with 64-bit versions 
of Ubuntu

 But 64-bit stuff is confusing
 They're still working out where the eventual standard will be
 64-bit addressing allows 16,777,216 terabytes of memory to be addressed (which 

is far beyond what anyone needs)
 Current implementations only use 48 bits
 User space (text up through stack) gets low 128 terabytes
 Kernel space gets the high 128 terabytes

 The starting points for many segments used to be fixed, but Linux now 
randomizes them a little for security



 Addresses in one process have nothing to do with addresses in 
another

 The OS maps the virtual addresses to physical addresses
 Transparently!
 Each process has no idea what the location of, for example, its virtual 

address 0x0432A8F8 is in physical memory
 Benefits:
 Security: One process cannot (normally) interfere with the memory inside 

another process
 Bookkeeping: The OS only gives each process what it needs and can 

temporarily store parts of a process's memory on disk to make more space



 OS sometimes means the entire operating system, including 
utilities, window managers, and lots of other stuff

 Sometimes OS means just the kernel
 The kernel is the part of the OS that does deep stuff:
 Scheduling processes
 Accessing devices
 Managing memory

 Some operations can only be done in kernel mode, the mode 
that the kernel runs in

 Normal programs run in user mode



 It's a special program
 Part of every process's virtual memory is used by the kernel
 The kernel is reactive
 When a normal program needs something that only the kernel can 

do, it asks for it
 Then, control switches to the kernel
 It runs as if it's part of the currently running program
 Then, it gives control back





 When you're using your computer, you might be doing a lot of things at 
the same time:
 Browsing the Internet
 Chatting on Discord
 Coding
 Streaming video and audio

 It feels like all of these programs are running at the same time
 This "running at the same time" feeling is called concurrency

 Because your computer has multiple cores, several of them can be 
running at the same time

 But your computer has a small number of cores and a lot of programs to 
run



 Let's go back to 2000 (and earlier) when virtually all desktop 
and laptop computers were single core machines

 In order for it to seem like all of those programs were running 
at the same time, the OS actually gives each process some 
time to run before switching to another process

 Because computers were fast (even in 2000), it seemed like all 
those programs were running at the same time



 Back in the dim, dark past, programmers submitted their 
programs to be run
 Computers were large and expensive
 Programs were submitted on cards
 Jobs were run in batches

 If you had a syntax error in your program, you had to resubmit 
your deck of cards the next day



 One approach to batch processing is running Process A until it's done, then 
Process B, then Process C

 The problem is that programs do I/O
 I/O is slow
 The CPU isn't in use while waiting for I/O

 Consider the following example:
 Green is computation
 Orange is I/O

 Nothing is getting done during I/O!

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
ro

ce
ss A

B

C



 CPU utilization is the 
percentage of time that the CPU 
is being used

 On the previous slide, process 
time broke down like this:

 Consequently, we have a CPU 
utilization of 15/25 = 60%

 It took 25 time units to finish all 
jobs

Process CPU Time I/O Time
A 5 3
B 2 6
C 8 1

Total 15 10



Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ro

ce
ss A

B

C

 With true multiprogramming, you have more than one process 
loaded into memory

 Then, when one process is waiting on I/O, we can start running 
another

 Using multiprogramming, we could run Processes A, B, and C as 
follows:

 Doing so gives us a CPU utilization of 15/16 = 93.75% and only 16 
time units to finish the work



 Preemptive multitasking:
 Processes get a maximum amount of time to run called a quantum
 If the process starts doing I/O, the OS switches to another process
 Otherwise, the OS switches when the process runs out of time
 There's research about the ideal length of a quantum

 Cooperative multitasking:
 Processes run until they do some I/O or voluntarily give up control

 Cooperative is good because it's simple and can have lower 
overhead

 Unfortunately, the problem of processes that don't give up control 
means that most modern systems use preemptive multitasking



 A context switch happens when the running process changes
 The virtual memory of one process changes to another
 The kernel memory stays the same

 The scheduler in the OS decided which process runs next

 Because memory has to get saved and restored, cache is invalidated, and 
there's a switch from user mode to kernel mode and back, context 
switches have overhead that slows things down

Kernel Mode User ModeUser Mode

Process executes 
syscall to 

switch to kernel 
mode

Save register 
values into 

Process A's data 
block

Change to 
Process B's 

virtual memory

Restore register 
values from 

Process B's data 
block

Kernel executes 
sysret, 

returning to user 
mode

Process B 
resumes 

executing







 Kernel mechanics
 System calls
 Processes



 Finish Assignment 1
 Due Friday by midnight!

 Look over Assignment 2
 Read sections 2.3, 2.4, and 2.5


	COMP 3400
	Last time
	Questions?
	Assignment 1
	Assignment 2
	Processes
	Processes
	Virtual memory
	64-bit Linux memory layout
	Why is it virtual memory?
	Operating systems
	More on the kernel
	Multiprogramming
	Multiprogramming
	Kickin' it old school
	Kickin' it even older school
	Problems with naïve batch processing
	CPU utilization
	Multiprogramming
	Types of multiprogramming
	Context switches
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

